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Abstract

Blood oxygenation level dependent (BOLD) contrast has been widely used for visualizing regional neural activation. Temporal filtering

and parameter estimation algorithms are generally used to account for the intrinsic temporal autocorrelation present in BOLD data. Arterial

spin labeling perfusion imaging is an emerging methodology for visualizing regional brain function both at rest and during activation.

Perfusion contrast manifests different noise properties compared with BOLD contrast, represented by the even distribution of noise power

and spatial coherence across the frequency spectrum. Consequently, different strategies are expected to be employed in the statistical analysis

of functional magnetic resonance imaging (fMRI) data based on perfusion contrast. In this study, the effect of different analysis methods upon

signal detection efficacy, as assessed by receiver operator characteristic (ROC) measures, was examined for perfusion fMRI data. Simulated

foci of neural activity of varying amplitude and spatial extent were added to resting perfusion data, and the accuracy of each analysis was

evaluated by comparing the results with the known distribution of pseudo-activation. In contrast to the BOLD fMRI, temporal smoothing or

filtering reduces the power of perfusion fMRI data analyses whereas spatial smoothing is beneficial to the efficacy of analyses.
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1. Introduction

Functional magnetic resonance imaging (fMRI) based on

the blood oxygenation level dependent (BOLD) contrast has

become a standard method for visualizing regional neural

activation. A consensus has emerged that valid statistical

inference, hence plausible interpretation of the neuronal

mechanism, can only be achieved by meticulous choice of

appropriate data analysis methods in BOLD fMRI. This

concern regarding the validity of neuroimaging studies

using fMRI arises mainly due to a robust observation that

BOLD image series possess temporal autocorrelation or

bsmoothness,Q manifested as elevated power in the lower

frequency range of the power spectrum accompanied by less

dominating broad-band components [1–5]. Various

approaches have been introduced to accommodate serial

correlation in the context of parameter estimation with

general linear model (GLM). A general dichotomy of these
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methods has been proposed by Friston et al. [6], which

includes (1) bwhitening Q of the time series with an exquisite

understanding of the noise characteristics [7,8] and (2)

bsmoothing Q (bfiltering Q) of the time series to impose a

known correlation structure [9]. It has been proposed that

band-pass filtering, and implicitly smoothing, provides an

optimal solution to minimize bias while maintaining a

reasonable degree of efficiency in BOLD fMRI.

Arterial spin labeling (ASL) perfusion imaging is an

emerging and alternative methodology for functional neuro-

imaging studies [10,11]. In contrast to BOLD fMRI that

relies on the susceptibility effects in and around the venous

vasculature [12], ASL perfusion contrast is based on

alternations in the longitudinal relaxation of brain tissue

caused by changes in regional blood flow [13]. Conse-

quently, perfusion contrast may yield more specific func-

tional localization [14,15] and reduced sensitivity to static

susceptibility effects [16], although the size of signal

changes induced by task activation is generally smaller in

ASL than BOLD fMRI. Because perfusion image series are

generated by pair-wise subtraction of temporally adjacent
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control and label acquisitions, the noise properties of ASL

perfusion contrast are also distinctive from those of the

BOLD contrast. Recent studies demonstrate that perfusion

data manifest relatively even distribution of noise power

across the frequency spectrum [17,18], i.e., image time

series acquired using ASL possess minimal correlation in

time. This natural bwhite-noiseQ property predicts that

perfusion time series without any temporal manipulation

(bfiltering Q or bsmoothing Q) should provide the most efficient

parameter estimation in statistical analyses [6]. The accuracy

and validity of the statistical inference using such a

conventional GLM analysis was recently demonstrated by

assessing the false-positive rates in null-hypothesis perfusion

fMRI data [17]. Despite the evidence for a flat noise

distribution, temporal autocorrelation may still be present in

perfusion fMRI data, but buried in the relatively large noise,

therefore not observed in the mean power spectrum averaged

across voxels. The experimental support for such speculation

is that the perfusion-based hemodynamic function follows a

very close temporal evolution as that observed in BOLD

fMRI [19,20]. Temporal smoothing, particularly a bmatched

filter,Q is therefore beneficial for detecting small signal out of

a white-noise background based on prior knowledge of the

target signal [21]. The prime aim of the present work is to

address the question whether perfusion data should be

temporally smoothed or not smoothed for efficient and

accurate parameter estimation.

Besides temporal smoothing, spatial smoothing has

become a routine step in the analysis of fMRI data, to

improve signal detection as well as to better characterize

(stabilize) the spatial smoothness [22,23]. In BOLD fMRI, it

has been found that signal components with lower temporal

frequencies tend to be more coherent across space than

components with higher temporal frequency [1,17,24]. As a

consequence, spatial smoothing of BOLD data acts to

augment temporal noise in the low-frequency range and can

deleteriously impact experimental power. Perfusion fMRI

data, in contrast, seem not to show a dependence on the

temporal frequency with respect to its degree of spatial

coherence [17]. Spatial smoothing is therefore expected to

improve the sensitivity of perfusion fMRI without exacer-

bating the confounding effect due to slow baseline drifts.

The second question to be addressed in this paper is whether

and to what extent spatial smoothing should be carried out

in perfusion fMRI to yield accurate signal detection and

appropriate statistics.

To these ends, the receiver operator characteristic (ROC)

method [25] was employed to assess the performance and

efficacy of various data analysis approaches in perfusion

fMRI, especially the effects of temporal and spatial

smoothing. The ROC method has been previously used

as a tool for objective comparisons of various strategies in

BOLD fMRI [26,27]. Its advantage is that the methodo-

logical performance can be compared without referring to

the statistical significance of the result, which is still

difficult to define and may vary for each analysis. In the
present work, we generated data sets by introducing

simulated activation foci with known intensity and spatial

extent into fMRI data acquired during resting states. The

accuracy of each analysis was evaluated according to its

ability to detect most of the brealQ activations while

minimizing the detection of bfalseQ activations.
2. Methods

2.1. MR scanning

MR scanning was carried out on a 1.5-T whole-body

system (GE Medical Systems, Milwaukee, WI), with the

product quadrature head coil. Written informed consent

was obtained prior to all human studies according to an

Institutional Review Board approval. Perfusion imaging

was performed on 10 healthy subjects (19–27 years,

5 female, mean 24.1 years) using a pulsed ASL (PASL)

method, as described previously [17,28]. The PASL

sequence was a modified version of the flow-sensitive

alternating inversion recovery (FAIR) [29] technique, in

which a saturation pulse was applied at 800 ms after the

inversion pulse [frequency offset corrected inversion

(FOCI), 16 ms, BW 10 kg) [30], similar to QUIPSS II

(Quantitative Imaging of Perfusion using a Single Subtrac-

tion) [31]. A gradient-echo echo-planar imaging (EPI)

sequence was used for image acquisition, and the

parameters were FOV=24�16 cm, 64�40 matrix, TR/

TE=3000/18 ms, bandwidth 100 kHz, flip angle=908, slice
thickness 8 mm, interslice space 2 mm. Eight slices of

brain cortex were acquired from inferior to superior in an

interleaved order, and each slice acquisition took about

50 ms. Eight minutes of resting state perfusion scan (160

acquisitions) was carried out on each subject while the

subject was instructed to relax with eyes open. A 30-s two-

point T1 measurement sequence was carried out after the

scan for cerebral blood flow (CBF) quantification. Nine of

the 10 subjects also underwent BOLD fMRI scans using a

gradient-echo EPI sequence which was the same as that

used in PASL scans, and the parameters were

FOV=24�16 cm, 64�40 matrix, TR/TE=2000/50 ms,

bandwidth 100 kHz, flip angle=908. Twenty contiguous

slices with a thickness of 5 mm were acquired from inferior

to superior in an interleaved order. Eight minutes of resting

state BOLD data (240 acquisitions) were acquired from

these nine subjects. For comparison of the BOLD and

perfusion contrast, we only used these nine subjects’ data

in the following analyses. The perfusion data were also

used in our prior study for testing the false-positive rate

under null-hypothesis conditions [17].

2.2. Simulated activation

In each subject, both the BOLD and raw PASL image

series were corrected for motion [32]. The series of label

images in the PASL scan were shifted in time by one TR

using sinc interpolation [18], and the perfusion weighted
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image series were generated by pair-wise subtraction

between time-matched label and control images. Absolute

CBF image series (with 80 samples in each subject) were

calculated from the perfusion-weighted image series

following the PASL model by incorporating the M0 maps

acquired using the T1 measurement sequence, as described

previously [17,33].

Activation time series were added to approximately 5% of

the total brain pixels in the motion-corrected BOLD and CBF

image series, respectively. The region-of-interest (ROI) of the

gray matter was segmented using the SPM99 software

package in each subject, which was then used to constrain

these activation foci within gray matter regions. This is

physiologically reasonable as neuronal activations are

generally associated with the brain cortex. For the BOLD

data, signal time series in odd and even slices were pair-wise

summated (slice resolution down-sampled by a factor of 2) to

form a new dataset with 10 slices of 10 mm thickness, so that

the BOLD and CBF data had similar spatial resolution for

comparison. Because of the increased signal-to-noise ratio

(SNR), BOLD data with summated slices yielded about 2%

increase in the ROC score compared to the original dataset,

but did not affect the results reported in this paper. Three

cluster sizes of activation foci were tested, i.e., single voxel

(1�1�1), 4 contiguous voxels (2�2�1) and 32 contiguous

voxels (4�4�2) with a corresponding volume of 0.14, 0.56

and 4.5 cm3, respectively. Hereafter, these three conditions

are referred to as the cluster size of 1, 2 and 4 pixels,

respectively, according to the in-plane diameter of the given

activation foci. These three activation cluster sizes were
Fig. 1. Assumed hemodynamic response functions (HRF) in the data analysis of p

perfusion and BOLD series averaged across the voxels with added activation in a

states is 1.5% and 50% in the BOLD and perfusion data, respectively.
tested separately for each of the analysis model in the BOLD

and CBF data. For BOLD data, the signal change between the

resting and activation states was assumed to be 1.5% of the

mean original signal intensity in the corresponding voxel. For

perfusion data, three levels of percentage signal change

during activation states (25%, 50% and 75% on top of the

baseline CBF value) were tested. The ranges of the fractional

signal change in BOLD and perfusion data were in line with

reported values in sensorimotor and cognitive studies [34].

The added time series was the convolution of a boxcar

function and the hemodynamic response function (HRF) in

both BOLD and perfusion data. Other shapes of rest/

activation function, such as sinusoid, have been tested which

yielded similar results as the boxcar function. The HRF in

BOLD data was derived from a previous study [35]. The

same HRF was used for perfusion data since the shapes of the

perfusion and BOLD HRFs are very similar [18–20]. Fig. 1

displays the assumed HRFs along with the representative

mean time courses averaged across the activated voxels in

both the BOLD and perfusion data. Because the effective

temporal resolution was 6 s per sample (2TR), the perfusion

HRF manifested minimal smoothness and the overall effect

through convolution with the boxcar function was a time

delay of about 6 s. The task design was assumed to be 30 s

OFF/ON for both the BOLD and CBF image series in

each subject.

2.3. Data analysis

BOLD and CBF datasets with assumed activation foci

were spatially smoothed with three sizes of Gaussian
erfusion and BOLD fMRI. Also displayed are the mean time courses of the

representative subject. The signal change between the resting and activation



Fig. 2. ROC curves of perfusion and BOLD fMRI obtained from a

representative subject at the task frequencies of 30 s OFF/ON. The

activation cluster size is 2 pixels in both the perfusion and BOLD data

which have been spatially smoothed with a 2-pixel FWHM Gaussian

kernel. The benchmark GLM analysis is employed for perfusion fMRI

while the BOLD data are analyzed following the modified GLM method.

TPR indicates true-positive rate and FPR indicates false-positive rate.
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kernel, namely, a full width at half maximum (FWHM) of 1

(1�1�1), 2 (2�2�1) and 4 (4�4�2) in-plane pixels,

respectively (the same size as the assumed activation foci).

Statistical analyses were carried out using the VoxBo

software package (http://www.VoxBo.org). The analysis

of the BOLD image series followed the modified general

linear model [9]. A t-statistic was used to evaluate the

significance of the variance in the data explained by the

model. The reference function was convolved with the

BOLD HRF to account for the temporal delay and

smoothness due to hemodynamic effects. To accommodate

temporal autocorrelation of the BOLD data, a 1/frequency

(1/f ) function was fit to the (square root of the) average

BOLD power spectrum, ignoring those frequencies at

which power attributable to task might be expected. The

time-domain representation of the 1/f curve was placed

within the K matrix (the convolution matrix representing

all assumed temporal autocorrelation) [1,9] along with a

filter designed to remove the low-frequency confounds

and high-frequency noise at the Nyquist frequency, and a

low-pass kernel representing the standard hemodynamic

function [35]. The low-frequency noise to be filtered out

was defined as the frequency range containing less than

1% of the power of the frequency spectrum of the

reference function.

For perfusion data, the benchmark analysis consisted

only of a conventional GLM analysis without temporal

smoothing or filtering. Various preprocessing interventions

were then assessed, including low-pass, high-pass filtering,

temporal smoothing as well as their combinations. As

aforementioned, the cutoff of the low- and high-pass filters

was determined to avoid power overlap with the presumed

reference function. For example, the cutoff of low-frequen-

cy noise was generally 2 frequency units (which is the

resolution of frequency spectrum) below the main frequency

of the task function, while the cutoff of high-frequency

components was above the third harmonic of the main task

frequency. The attempted temporal smoothing included

convolution with HRF (see Fig. 1), moving average of

three samples and Gaussian smoothing kernel with a

FWHM of two samples. These smoothing kernels were

chosen because their temporal scales are similar to that of

the perfusion-based HRF. It is worth noting that the

temporal smoothness and hence the effective degree of

freedom should change when the perfusion image series

were smoothed or/and filtered. The time-domain represen-

tation of these filters and smooth kernels was placed within

the K matrix for the GLM analysis. A t-test was used to

evaluate the significance of the variance in the data

explained by the model. The reference function was

convolved with the perfusion HRF to account for the

temporal delay and potential smoothness.

In order to generate the ROC curves, the brain voxels

were ranked from high T scores to low T scores. ROC

curves were plotted based on the ratio of true activations vs.

false-positive findings throughout the range of ranked T
scores, by comparing with the spatial locations of added

activation (see Fig. 2). A single parameter (area under curve,

AUC) was used as the surrogate score for the efficacy of

each method. An earlier study employed other measure for

ROC analysis, such as the mean of the ROC value over a

limited range of false-positive ratio between 0 and 0.1 [26].

We also obtained this value in the data analysis which did

not show different result compared to the AUC measures

and therefore was not reported here. The ROC results were

entered into repeated-measures ANOVA using the SPSS

software package, to assess the effects of spatial smoothing,

activation cluster size, activation intensity and contrast

(BOLD and perfusion).
3. Results

3.1. Activation intensity

Fig. 3 displays the mean ROC scores (AUC) as a

function of the fractional signal change in perfusion fMRI.

The data are spatially smoothed with an intermediate

Gaussian kernel of 2-pixel FWHM followed by the

benchmark GLM analysis. As expected, the power of

perfusion fMRI increases with higher fractional signal

change and the main effect is statistically significant by

repeated measures ANOVA test (F(2, 7)=492.0, Pb.001).

This effect of activation intensity is quite robust and can

be repeated in datasets with different sizes of activation

foci (see Fig. 3). Since this result provides a general

reference frame for the relationship between the method-

ological performance and effect size, we use a typical

http://www.VoxBo.org


Table 1

Mean ROC scores of perfusion fMRI with various temporal smoothing

filtering methods for 30 s OFF/ON task paradigm

Analysis methods Activation cluster size

1 pixel 2 pixels 4 pixels

Benchmark GLM 0.700F0.031 0.816F0.035 0.882F0.023

High-pass filtering* 0.679F0.026 0.788F0.033 0.845F0.036

Low-pass filtering* 0.696F0.034 0.810F0.037 0.877F0.022

Band-pass filtering* 0.670F0.026 0.775F0.036 0.832F0.033

HRF convolution* 0.661F0.021 0.772F0.038 0.848F0.022

Moving average

smoothing (3 points)*

0.681F0.032 0.796F0.034 0.869F0.021

Gaussian smoothing

(FWHM 2 points)*

0.658F0.021 0.777F0.029 0.850F0.016

* Significant difference between mean ROC scores obtained using the

corresponding temporal smoothing/filtering method and the benchmark

GLM analysis (repeated measures ANOVA, P b.05).

Fig. 3. Mean ROC scores (AUC) of perfusion fMRI as a function of the

assumed fractional signal change measured at different activation cluste

sizes. The data are spatially smoothed with a 2-pixel FWHM Gaussian

kernel and analyzed using the benchmark GLM. The error bars indicate the

standard deviation across the nine subjects.
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signal change of 50% for perfusion activation in the

following analyses.

3.2. Temporal smoothing/filtering

Table 1 lists the mean ROC scores obtained under

various conditions of temporal smoothing and filtering in

perfusion fMRI. An intermediate spatial smoothing kernel

of 2-pixel FWHM is applied in this analysis. Filtering or

smoothing of the perfusion image series degrades the

accuracy of perfusion fMRI for the design frequency of

30 s OFF/ON, and the effect is statistically significant in

all the tested temporal smoothing and filtering methods.

We also repeated the above exam for the design frequency

of 4 min OFF/ON, and the results are identical. The topic

of the effect of temporal smoothing on BOLD fMRI has
/

been studied extensively [6,9,26] and therefore is not

repeated here.

3.3. Spatial smoothing

The effect of spatial smoothing on the performance of

data analysis is assessed by applying different sizes of

smoothing kernels on both the BOLD and perfusion data

with added activation foci. The benchmark GLM is

employed for the statistical analysis of perfusion data. As

shown in Fig. 4, the accuracies of BOLD and perfusion

fMRI are not affected by the activation cluster size when

little spatial smoothing is applied (FWHM of 1 pixel). With

heavier spatial smoothing (FWHM N2 pixels), the accura-

cies of BOLD and perfusion fMRI improve with larger

activation cluster size. The interaction of spatial smoothing

and activation cluster size is highly significant (F(4,

5)=306.1, P b.001), indicating that spatial smoothing

enhances spatially focalized signal while suppresses spa-

tially uncorrelated noise. Fig. 4 also indicates that the effect

of spatial smoothing is different in BOLD and perfusion

fMRI. In perfusion data, the peak ROC score is reached

when the activation cluster size and smoothing kernel are

similar. In BOLD data, however, the power generally

decreases with heavier spatial smoothing or reaches its

peak at a smaller smoothing kernel size as compared to the

corresponding perfusion data (e.g., BOLD data with an

activation cluster size of 4 pixels). The above observation is

confirmed by a significant effect of spatial smooth-

ing�contrast interaction (F(2, 7)=33.5, Pb.001). In gen-

eral, the performance and accuracy of the perfusion contrast

are inferior to BOLD at the tested design frequency of 30 s

OFF/ON (F(1, 8)=103.4, Pb.001). However, the discrep-

ancy between BOLD and perfusion contrasts diminishes

with heavier spatial smoothing regardless of the cluster size
Fig. 4. Mean ROC scores (AUC) of perfusion and BOLD fMRI obtained

with different activation cluster sizes and various levels of spatial smoothing.

The benchmark GLM and modified GLM are employed for the statistical

analysis of perfusion and BOLD data, respectively. The modified GLM is

described in the first paragraph of the Data analysis section.



Fig. 5. Mean difference ROC scores (dAUC) between BOLD and

perfusion fMRI as a function of the size of the spatial smoothing kernel.

The experimental conditions are the same as those shown in Fig. 4. Note

the performances of perfusion and BOLD fMRI converges with heavier

spatial smoothing.
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of activation foci (see Fig. 5), suggesting a beneficial

role of spatial smoothing in the statistical analysis of

perfusion fMRI.
4. Discussion

Our results of ROC analyses suggest that spatial

smoothing generally benefits while temporal smoothing or

filtering impairs the efficacy of perfusion fMRI. Following

appropriate statistical analysis steps, the performance of

perfusion fMRI may approach that of BOLD fMRI, albeit a

much lower temporal resolution in perfusion as compared to

BOLD data. Previous studies have consistently found that

high-pass filtering improves the accuracy of BOLD fMRI

by minimizing the low-frequency noise [6,9,26]. Low-pass

filtering (temporal smoothing), although having the side

effect of enhancing low-frequency noise, benefits the

overall performance of BOLD fMRI by reducing the bias

through an explicitly imposed noise structure [6]. The

general consensus in the data analysis of BOLD fMRI is to

achieve an optimal balance of efficiency and accuracy

through band-pass filtering and temporal smoothing. In

contrast, our results indicate that such temporal manipu-

lation degrades the performance of perfusion fMRI.

Conventional signal processing approaches and estimation

theory dictate that whitening the data offers the most

efficient parameter estimation [36]. Our data are in line with

the theoretical prediction since perfusion image series

possess an even distribution of power across the frequency

spectrum. Introducing temporal filtering or smoothing

reduces the effective degree of freedom in the GLM

analysis, thereby the efficiencies of perfusion fMRI. The

accuracy of parameter estimation is also affected by

temporal smoothing or filtering, probably because the effect
of random variation within the preserved frequency range is

relatively magnified while other frequency bands are

suppressed. One argument against our observation is that

serial correlation due to hemodynamic effects may be

minimal because our perfusion data were acquired at a low

sample rate (6 s per image). We have recently acquired

perfusion data with higher sample rate at 3.0 T (TR=2 s, 4 s

per perfusion image). Preliminary analyses do not reveal

temporal autocorrelation in these datasets, and applying

various smoothing kernels repeatedly reduces the ROC

score. An earlier study also explored the power spectrum of

perfusion data acquired with TR=2 s, but failed to detect

any serial correlation in the temporal image series [18].

Future studies may be needed to explore the noise

characteristics of perfusion data acquired with high tempo-

ral resolution which is becoming feasible recently [37].

Spatial smoothing plays contrasting roles in the data

analysis of perfusion and BOLD fMRI. According to image

processing theory, spatial smoothing normally improves the

SNR and the maximum signal detection occurs when the size

of the smoothing kernel approaches the spatial extent of the

target signal [36]. Our data on the effect of spatial smoothing

on the performance of perfusion fMRI (see Fig. 4) match

well with the above theory. In BOLD fMRI, while spatial

smoothing is a necessary step to improve SNR and stabilize

spatial smoothness [22,23], it can also deleteriously impact

the experimental power through augmentation of the low-

frequency noise [17,24]. This is because spatially coherent

noise in BOLD fMRI has been found to vary systematically

across temporal frequencies, in that lower temporal frequen-

cies tend to share phase to a greater extent across space than

high frequencies [1]. As a consequence of the magnified

confounding effects due to low-frequency noise, BOLD

fMRI shows a general trend of reduced detection specificity

and decreasing efficacy with heavier spatial smoothing

(see Fig. 4). The spatially coherent noise in perfusion data,

in contrast, has been demonstrated to follow an even

distribution across temporal frequencies [17]. Spatially

smoothed perfusion data are therefore not susceptible to

slow drift effects, and the result is the convergence (or even

crossover) in the efficacies of perfusion and BOLD fMRI

with heavier spatial smoothing (see Fig. 5).
5. Conclusion

Using ROC analysis, we provide a reference for

appropriate data analysis steps in perfusion fMRI. Our

results also confirm previous finding that perfusion fMRI

data possess even noise distribution in the power spectrum

and spatial coherence.
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